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Abstract 

Background:  Feed efficiency (FE) related traits play a key role in the economy and sustainability of beef cattle pro-
duction systems. The accurate knowledge of the physiologic background for FE-related traits can help the develop-
ment of more efficient selection strategies for them. Hence, multi-trait weighted GWAS (MTwGWAS) and meta-analyze 
were used to find genomic regions associated with average daily gain (ADG), dry matter intake (DMI), feed conversion 
ratio (FCR), feed efficiency (FE), and residual feed intake (RFI). The FE-related traits and genomic information belong 
to two breeding programs that perform the FE test at different ages: post-weaning (1,024 animals IZ population) and 
post-yearling (918 animals for the QLT population).

Results:  The meta-analyze MTwGWAS identified 14 genomic regions (-log10(p -value) > 5) regions mapped on BTA 
1, 2, 3, 4, 7, 8, 11, 14, 15, 18, 21, and 29. These regions explained a large proportion of the total genetic variance for 
FE-related traits across-population ranging from 20% (FCR) to 36% (DMI) in the IZ population and from 22% (RFI) to 
28% (ADG) in the QLT population. Relevant candidate genes within these regions (LIPE, LPL, IGF1R, IGF1, IGFBP5, IGF2, 
INS, INSR, LEPR, LEPROT, POMC, NPY, AGRP, TGFB1, GHSR, JAK1, LYN, MOS, PLAG1, CHCD7, LCAT​, and PLA2G15) highlighted 
that the physiological mechanisms related to neuropeptides and the metabolic signals controlling the body’s energy 
balance are responsible for leading to greater feed efficiency. Integrated meta-analysis results and functional path-
way enrichment analysis highlighted the major effect of biological functions linked to energy, lipid metabolism, and 
hormone signaling that mediates the effects of peptide signals in the hypothalamus and whole-body energy homeo-
stasis affecting the genetic control of FE-related traits in Nellore cattle.

Conclusions:  Genes and pathways associated with common signals for feed efficiency-related traits provide bet-
ter knowledge about regions with biological relevance in physiological mechanisms associated with differences in 
energy metabolism and hypothalamus signaling. These pleiotropic regions would support the selection for feed 
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Background
The genetic improvement of animal feed efficiency (FE) 
has been considered a relevant aspect in breeding pro-
grams to achieve reductions in feed costs and environ-
mental impacts [1]. Indeed, feeding can make up to 70% 
of the total beef cattle production costs [2]. Therefore, 
selecting animals for FE-related traits improve the prof-
itability of beef cattle production systems by increasing 
productivity while reducing feed intake [3]. Usually, the 
FE in beef cattle is evaluated by dry matter intake (DMI), 
feed conversion ratio (FCR), feed efficiency (FE), and 
residual feed intake (RFI). However, the accurate meas-
urement of FE-related traits is expensive and difficult, 
limiting the number of animals evaluated.

Feed efficiency-related traits are controlled by a com-
plex interaction of different physiological mechanisms 
and biological processes regulating feed intake and 
energy expenditure [4–6]. Genome-wide association 
studies (GWAS) have been pointed out major genomic 
regions involved in physiological factors responsible for 
the phenotypic variation in FE-related traits in beef cattle 
populations [7–10]. However, FE-related traits are con-
trolled by several quantitative trait loci (QTL) with small 
effects, and applying GWAS can generate false-positive 
marker signals in small populations, requiring a large 
population to accurately detect the SNP markers with 
small or moderate additive effect [11].

Assembling a large enough population for accurate 
detection of QTLs is the major challenge for GWAS, 
especially for FE-related traits which are commonly 
evaluated in small populations. A limited number of ani-
mals with genotype and phenotypic information lead to 
lower accuracy of SNP markers effect, making it difficult 
to identify causative mutations directly associated with 
the target trait [11]. In this context, meta-analysis is an 
efficient approach to overcome this limitation related to 
population size by combining results from independent 
studies in order to increase the power of detection and 
map genomic variants accurately affecting the trait and 
decrease false-positive associations [12–14]. In addition, 
using GWAS meta-analysis to identify genomic regions 
can provide better knowledge of the main biological 
mechanisms involved in genetic architecture regulation 
of FE-related traits in different populations of Nellore 
cattle[9, 10]. Thus, the knowledge regarding genomic 
regions and biological pathways involved with differences 
in FE-related traits across Nellore populations could aid 

the development of more efficient strategies and tools 
to attain genetic improvement of more efficient animals. 
Hence, this study was carried out to uncover potential 
genomic regions and candidate genes acting in biological 
functions for FE-related traits across two Nellore breed-
ing populations.

Material and methods
The FE-related traits (ADG, DMI, FCR, FE, and RFI) 
and genomic information were obtained for 1,024 ani-
mals belonging to an experimental breeding program 
at Beef Cattle Research Center (Institute of Animal Sci-
ence – IZ), and 918 animals from a commercial breeding 
program Nellore Qualitas (QLT). The animal procedures 
realized in this research agreed with Animal Care of the 
São Paulo State University (UNESP), School of Agricul-
tural and Veterinary Science Ethical Committee (proto-
col number 18.340/16).

Experimental breeding program – IZ population
The experimental breeding program was established in 
1980, selecting animals based on yearling body weight 
(YBW) measured at 378  days of age in young bulls and 
550  days of age in heifers. The IZ population is divided 
into three selection herds: Nellore control (NeC), Nel-
lore Selection (NeS), and Nellore Traditional (NeT). In 
NeC, animals are selected based on differential selection 
for YBW close to zero. On the other hand, animals are 
selected for the maximum differential selection for YBW 
in NeS and NeT [15]. In the NeT, sires from commercial 
herds and sires from the NeS can be used in the breed-
ing season. The NeC and NeS are closed herds, i.e., only 
sires from the same herd are used in the breeding season, 
and the inbreeding rate is controlled in all the herds with 
planned mattings.

The FE-related traits were measured on 1,156 animals 
(801 males and 355 females), born from 2004 to 2015, 
being 146 of NeC (104 males and 42 females), 300 of NeS 
(214 males and 86 females), and 710 of NeT (483 males 
and 227 females) herd. The animals were evaluated in a 
feeding trial, in which they were either housed in indi-
vidual pens (683 animals) or group pens equipped with 
the GrowSafe feeding system (473 animals). In both sit-
uations, the feeding trial comprised at least 21  days for 
adaptation to the feedlot diet and management and at 
least 56  days for the data collection period. During the 
feeding trial period, the animals were grouped according 

efficiency-related traits, incorporating and pondering causal variations assigning prior weights in genomic selection 
approaches.
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to sex, males exhibited an average age at the beginning 
of the trial of 275 and 366 ± 27.5 days in the end, while 
females showed an average age at the beginning of the 
trial of 302 and 384 ± 45.4 days at the end of the feeding 
trial.

Animals were weighed without fasting at the begin-
ning and the end of the feeding trial, as well as every 
14 days during the experimental period. The mixed diet 
(dry corn grain, corn silage, soybean, urea, and mineral 
salt) was offered ad libitum and formulated with 67% of 
total digestible nutrients (TDN) and 13% of crude protein 
(CP), allowing an average daily gain (ADG) of 1.1 kg/day.

Commercial breeding program – Nelore Qualitas 
population
Nelore Qualitas (QLT) breeding program comprises 34 
farms distributed in two regions of Brazil (Midwest and 
Southeast) and Bolivia. The animals are selected based 
on a selection index that includes body weight at weaning 
(24%), weight gain from weaning to yearling (38%), scro-
tal circumference (19%), and muscling visual score (19%), 
both measured around 15 months of age. In the QLT pop-
ulation, FE-related traits from 947 young bulls, born from 
2008 to 2015, were evaluated in feeding trials in individ-
ual pens (715 animals) or group pens equipped with the 
Intergado feeding system (232 animals). The Intergado 
System operates like the GrowSafe System, measuring 
the animals’ feed intake and feed frequency. Each feeding 
trial comprised 28 days for adaptation to the feedlot diet 
and 56  days for data recording. Animals were weighed 
without fasting, at the beginning and ending, as well as 
every 21  days during the experimental period. The diet 
(dry corn grain, corn silage, sugarcane bagasse, soybean, 
urea, mineral salt, and potassium chloride) was offered 
ad  libitum and formulated with 82% of total digestible 
nutrients (TDN) and 12,5% of CP, allowing an ADG of 
1.5  kg/day. Animals were, on average, 652 ± 38.43  days 
old at the beginning and 712.02 ± 38.43  days old at the 
end of the feeding trial.

Phenotypic traits
During the feeding trials, in both IZ and QLT popula-
tions, the mixed diet was offered at 8:00 h and 16:00 h, 
allowing from 5 to 10% refusals. In the individual pens, 
the orts were weighed daily in the morning before the 
feed delivery to calculate the daily dietary intake. In the 
group pens, the feed intake was recorded automatically 
by the GrowSafe or Intergado feeding system. Thus, 
the DMI was estimated as the feed intake by each ani-
mal with subsequent adjustment for dry matter content 
and expressed as kg/day. Average daily gain (ADG) was 
defined as the slope from the linear regression of body 
weight (BW) on feeding trial days. The ratio between 

ADG and DMI was used to calculate the feed efficiency 
(FE), and the ratio between DMI and ADG was used to 
estimate the feed conversion rate (FCR). Residual feed 
intake (RFI) was calculated in each test year as the differ-
ence between the observed and expected feed intake con-
sidering the each animal’s average metabolic body weight 
(MBW) and ADG, using the gold-standard equation pro-
posed by Koch et al. [16] as follows:

where β0 is the intercept, β1 and β2 are the linear regres-
sion coefficients for ADG and MBW 0.75 , respectively, and 
ε is the residue of the equation that represents the RFI 
estimate.

Phenotypic data quality control was performed for 
each breeding program (IZ and Qualitas), excluding 
records outside the interval of ± 3.5 SD below or above 
the mean of each contemporary group (CG). After phe-
notypic quality control, the number of animals per CG 
ranged from 10 to 70 for the IZ population and from 27 
to 119 for the QLT population. The CG in the IZ popula-
tion was defined by sex and month and year of birth and 
in the QLT population by month and year of birth and 
year of feed trial. In both cases, for animals in the group 
pens, the feed trial pen was added. Descriptive statistics 
and genetic parameter estimate for FE-related traits are 
reported in Table 1.

Genotype dataset
A total of 846 (IZ) and 582 (QLT) animals were geno-
typed using the Illumina BovineHD BeadChip assay 
(770 k, Illumina Inc., San Diego, CA, USA) and 310 (IZ) 
and 372 (QLT) animals using GeneSeek® HDi 75 K (Gen-
eSeek In/c., Lincoln, NE). For each population, animals 
genotyped with the lower density panel were imputed to 
the HD panel using FImpute v2.2 [17] separately, and its 
expected accuracy was higher than 0.97. In the genotype 
quality control, we removed non-autosomal markers and 
those presenting minor allele frequency (MAF) less than 
0.03, significant deviating from Hardy–Weinberg equilib-
rium (P ≤ 10–5), and with call rate less than 0.90. In addi-
tion, samples with a call rate lower than 0.90 were also 
removed from the analyses. After quality control, 1,024 
animals from IZ and 918 animals from QLT, and 387,035 
SNP markers in common between the two populations 
remained in the dataset.

Principal component analysis (PCA) evaluated the 
population substructure based on the SNP markers 
using the ade4 R package [18]. Four groups have been 
clustered using k-means clustering, three groups from 
the IZ population and one from the QLT population 
(Supplementary Fig. S1). The animals’ dispersion in the 

DMI = β0 + β1ADG + β2MBW 0.75
+ ε



Page 4 of 12Mota et al. BMC Genomics          (2022) 23:424 

PCA plot indicated the absence of subgroups in the QLT 
population.

Genome‑wide association study
Multi-trait weighted genome-wide association analysis 
(MTwGWAS) was performed for each population, sepa-
rately, considering the following general model:

where y is the matrix of FE-related traits; β is the vec-
tor of fixed effects; a is the additive effect of animals and 
e is the residual effect. The X and Z correspond to the 
incidence matrices related to fixed and random effects, 
respectively. Fixed effects were: CG, age at the beginning 
of the feed trial as linear and quadratic co-variables for 
both populations, and the IZ population, the three first 
principal components that explain 7.55% of the genotypic 
variability and the linear and quadratic effect of cow age 
were also considered.

The random effects of animal and residual were 
assumed to be normally distributed: a ∼ (0,G ⊗ Sa ) and 
e ∼ (0, I⊗ R), where G is the genomic relationship matrix 
according to VanRaden [19], ⊗ is the Kronecker product, 
I is the identity matrix, Sa is a (co)variance matrix of 
direct additive and R is a (co)variance matrix of residual 
effects for FE related traits, respectively. The G matrix 
used in the MTwGWAS method was constructed as fol-
lows: G = MDM

′

q where M is the SNP matrix assuming 
0, 1, and 2 for genotypes AA, AB, and BB; D is a diagonal 
weight matrix for each SNP marker and q is a weighting 
factor given as q =

1∑m
j=12pj(1−pj)

 where pj is the second 

allele frequency of the jth SNP marker.

y = Xβ + Za+ e

The SNP marker effect and weights were calcu-
lated based on genomic breeding values (GEBV) of 
genotyped animals obtained from a multi-trait model 
through the algorithm proposed by Wang et  al. [20]. 
The postgs_trt_eff option of the POSTGSF90 program 
[21] allows considering the MTwGWAS analysis speci-
fying the trait for which the SNP marker effect will be 
estimated each trait per time. The MTwGWAS is an 
iterative approach, but considering many iterations to 
calculate SNP weights can cause subjective peaks [20]. 
Therefore, to maximize the accuracy of SNP marker 
signals detection, the analysis was run using two itera-
tions to estimate the genetic variance explained by the 
markers [22].

The SNP marker effect and weights for wGWAS were 
estimated considering the algorithm proposed by Wang 
[20]: 1) In the first step D = I and second step D = w (w 
were the weight estimates obtained in step 6); 2) Calcu-
late the G matrix ( G = MDM

′

q ); 3) Estimation of the 
GEBV for animals using the multi-trait GBLUP; 4) Esti-
mation of the SNP marker effect ( ̂u ) based on the GEBV 
( ̂a ) of animals from the equation û = DM′

[
MDM′

]−1
â ; 

5) Estimation of the SNP marker weight ( D ) as follows: 
D = û22pj

(
1− pj

)
 where û2 is the allele substitution 

effect of each SNP marker and 6) the SNP markers weight 
(D) are normalized to keep the total genetic variance 
constant, to use in step 2.

Results from MTwGWAS was used to estimate the pro-
portion of genetic variance explained by SNPs markers 
( σ 2

û ) as follows: σ 2
û =

Var(
∑100

j=1Zjûj)

σ 2
a

x100% , where σ 2
a  is the 

genetic variance for each FE-related trait; Zj is the vector 
of jth SNP marker and ûj is the SNP effect of the jth SNP 
within the window with 100 markers.

Table 1  Descriptive statistics, additive genetic variance ( σ 2
a  ) and heritability ( h2 ) estimates for Nellore feed efficiency-related traits in IZ 

and Qualitas populations 

ADG average daily gain, FCR feed conversion ratio, FE feed efficiency, RFI residual feed intake, DMI dry matter intake and h2 – in parentheses represents a standard 
error for heritability estimates

IZ population (N = 1,024)

Trait Mean SD Min Max σ 2
a h2

  ADG (kg/day) 1.04 0.25 0.17 1.72 0.010 (0.002) 0.33 (0.042)

  FCR 7.24 1.66 3.65 15.23 0.19 (0.072) 0.19 (0.034)

  RFI (kg/day) -0.01 0.61 -2.36 4.13 0.27 (0.052) 0.28 (0.022)

  DMI (kg/day) 7.29 1.54 2.15 12.64 0.32 (0.033) 0.40 (0.039)

  FE 0.15 0.03 0.07 0.27 0.001 (0.0004) 0.21 (0.029)

Qualitas population (N = 918)

  ADG (kg/day) 1.53 0.43 0.28 2.48 0.028 (0.007) 0.34 (0.018)

  FCR 7.88 3.05 4.32 21.79 1.13 (0.302) 0.23 (0.017)

  RFI (kg/day) -0.006 0.76 -2.78 3.34 0.35 (0.035) 0.35 (0.025)

  DMI (kg/day) 11.05 1.44 7.18 15.84 0.47 (0.092) 0.45 (0.019)

  FE 0.13 0.03 0.05 0.23 0.008 (0.0005) 0.30 (0.022)
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Detection of candidate genomic regions 
across the population
To identify the regions affecting FE-related traits from 
GWAS analyzes performed separately for each popula-
tion (IZ and QLT), a multi-trait meta-analysis statisti-
cal method, described by Bolormaa et  al. [14], was 
performed. For statistical tests, the SNP effects were 
standardized as follows: tk =

ûk
SE(ûk )

 , where, tk is the 
t -values for the SNP marker effect; ûk is the SNP effects 
for each trait in each population and SE(ûk) is the 
standard error for SNP effect ( ̂uk).

A multi-trait meta-analysis statistic test was used to 
evaluate the association and influence of SNP effects 
for FE-related traits across two Nellore cattle popula-
tions [14]. This statistic test summarizes single-marker 
statistics following a χ2 distribution with k degrees of 
freedom, where k is the number of traits included in 
the multi-trait statistical test. For each SNP marker 
(total of 387,035 SNP markers) the statistic was: 
Multi − traitχ2

= t
′

kV
−1tk , where tk is a vector 10 × 1 

of the signed t -value of SNPk for the 5 FE-related traits 
in the 2 Nellore cattle population, t ′k is a transpose of 
vector tk ; V−1 is an inverse of the t -values correlation 
matrix between the t  -values (10 × 10). The V−1 was 
corrected by adding the average correlation of each 
trait to its respective diagonal element [23]. This cor-
rection was used because some traits show higher cor-
relations than others and may lead to highly significant 
composite scores even when single-trait analyses have 
lower evidence of the association [23]. The p  -value 
adjustment for multiple tests was performed using the 
false discovery rate (FDR) test [24]: fdr = mSNP

sSNP
∗ α , 

where mSNP represent the number of SNP markers con-
sidered in the analyze (387,035), α is the significance 
threshold (p  -value < 0.05) and sSNP is related to the 
number of significant markers with p -value < α.

Gene mapping and functional gene enrichment analysis
The SNP markers from statistical combination were 
deemed significant when –log10(p -value) > 5.0 (5% FDR) 
and grouped in SNP-window regions within each BTA 
when the markers did not show a gap greater than 0.2 Mb 
among them. Genes in significant SNP-window regions 
were identified using the NCBI BioSystems database for 
cattle using the map Bos taurus ARS-UCD1.2 assembly 
as reference. The candidate gene list from meta-analysis 
GWAS was used as the target gene list for functional 
classification for biological process (BP; Gene Ontol-
ogy—GO) and KEGG pathways using the string R Pack-
age [25] considering the Bovine database background 
[26]. The functional annotation was considered signifi-
cant at a p  -value < 0.05 and an FDR of 5% for multiple 
test correction as described by Boyle et al. [27].

Results and discussion
Significant genomic regions
Multi-trait meta-analysis of the FE-related traits across 
Nellore cattle populations identified a total of fourteen 
genomic regions ( −log10(p− value) > 5), mapped on 
BTA 1, 2, 3, 4, 7, 8, 11, 14, 15, 18, 21, and 29 (Fig. 1). These 
regions explained a large proportion of the genetic vari-
ance for FE-related traits that IZ (26.99% for ADG, 30.83% 
for DMI, 17.69% for FCR, 34.04% for FE and 33.76% 
for RFI) and QLT (27.82% for ADG, 26.85% for DMI, 
22.34% for FCR, 22.86% for FE and 24.40% for RFI) Nel-
lore populations shared. Most significant SNP markers 
were mapped on intron and downstream of gene variants 
(81.93%), capturing a relatively greater proportion of the 
additive genetic variance than other functional classes. 
Although in lower proportion, SNP markers mapped in 
missense (3.65%) and splicing (0.65%), 3’ (0.73%), and 5’ 
(0.54%) prime UTR variants, these regions play a key role 
in gene expression regulation and translation [28, 29].

Fig. 1  Manhattan plot for the statistical combination of genome-wide results for feed efficiency-related traits, average daily gain (ADG), dry matter 
intake (DMI), feed conversion ratio (FCR), feed efficiency (FE), and residual feed intake (RFI) across Nellore cattle populations. The horizontal blue line 
represents the significance threshold -log10(p -value) > 5.0 for markers considering an FDR of 5%
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The SNP-window on BTA1 (94.55 – 95.90  Mb) 
explained more than 2% of the genetic variance for FE-
related traits (Supplementary Fig. 2, 3 and 4). This region 
harbors the major genes NCEH1, GHSR, ECT2, GPX6, 
and GPX5 affecting physiological processes with impor-
tant effects in the regulation of pituitary growth hormone 
secretion, feed intake, and energy homeostasis (Table 2). 
The NCEH1 gene has been associated with lipid metabo-
lism and was under-expressed in the muscle of pigs phe-
notypically classified for high fatty acid composition [30]. 
The GHSR gene shows a striking effect in regulating ener-
getic homeostasis, insulin sensitivity and glucose uptake, 
and ghrelin secretion, with a major role in body weight 
and growth efficiency [31]. The GPX6 and GPX5 genes 
are involved in adaptive responses to oxidative stress by 
their antioxidant action, resulting in great tolerance to 
oxidative stress in animals with high feed efficiency [32]. 

Thus, these genes negatively control the actions of mito-
chondrial reactive oxygen species (ROS) on metabolism, 
representing an important physiological mechanism in 
more efficient animals [32].

The SNP-window on BTA2 (104.14 – 105.06  Mb) 
explained more than 2.80% of additive genetic vari-
ance (Supplementary Fig.  2, 3 and  4). This region is 
surrounded by the major genes IGFBP2 and IGFBP5 
(Table 2), which are associated with IGF-mediated func-
tions directly related to variations on energy expenditure 
in muscle and physiological mechanisms contributing to 
improving feed efficiency in cattle [33, 34]. The region 
on BTA14 (22.62 – 24.71  Mb; Table  2) explained more 
than 1.40% of additive genetic variance and harbors the 
genes LYN, TMEM68, PLAG1, CHCHD7, MOS, PENK, 
and IMPAD1, which affect mostly MAPK signaling path-
way, mechanisms related to cell proliferation and growth 

Table 2  Genes surrounding the significant genomic regions (-log10(p  -value) > 5) identified using the multi-trait meta-analysis 
statistical test of genome-wide association (GWAS) results for Feed efficiency-related traits (FE, FCR, RFI, and its components ADG, DMI), 
in IZ and Qualitas populations

a  The windows region represents the lower and maximum position for SNP markers deemed significantly ( −log10(p− value) > 5) from the multi-trait statistic test 
combination
b  Trait in which the genomic regions was significant using a multi-trait weighted genome-wide association studies (GWAS)

BTA Windows (Mb)a IZ population
Traitsb

Qualitas population
Traitsb

Genes

1 94.55—95.90 ADG, DMI, FE, RFI ADG, DMI, FCR, RFI ECT2, NCEH1, TNFSF10, GHSR, FNDC3B, TMEM212, PLD1, STXBP5L, POLQ, 
SPATA16

2 104.14—105.06 ADG, DMI, FCR, FE, RFI ADG, DMI, FCR, FE, RFI XRCC5, MARCH4, SMARCAL1, RPL37A, IGFBP2, IGFBP5, TRNAS-GGA, TNP1

3 78.99—80.84 DMI, FE ADG, DMI PDE4B, MGC137454, LEPR, LEPROT, DNAJC6, AK4, JAK1, bta-mir-101–1, RAVER2, 
CACHD1

4 70.88—71.85 ADG, DMI, FCR, FE, RFI FCR, FE OSBPL3, GSDME, MPP6, NPY

5 65.95—67.03 FCR, RFI FE NUP37, PARPBP, PMCH, IGF1, PAH, ASCL1, U1

7 15.60—16.54 ADG, DMI, FCR, FE, RFI ADG, FCR, FE KANK2, ACP5, ANGPTL8, ARHGEF18, CAMSAP3, CCDC151, CCDC159, CNN1, 
DOCK6, ECSIT, ELAVL3, ELOF1, EPOR, FCER2, INSR, MBD3L3, MCOLN1, PCP2, 
PET100, PEX11G, PLPPR2, PNPLA6, PRKCSH, RAB3D, RETN, RGL3, STXBP2, 
SWSAP1, TEX45, TMEM205, TRAPPC5, TSPAN16, U4, VN2R404P, XAB2, ZNF358, 
ZNF557, ZNF653

8 66.71—67.82 ADG DMI, RFI LPL, SLC18A1, ATP6V1B2, LZTS1

11 73.89—74.76 ADG, DMI, FCR, FE, RFI DMI, FCR, RFI DTNB, DNMT3A, bta-mir-1301, POMC, EFR3B, DNAJC27, ADCY3, CENPO, 
PTRHD1, NCOA1

14 22.62—24.71 ADG, DMI, FCR, FE, RFI ADG, DMI, FCR, FE, RFI FAM110B, LYN, XKR4, TMEM68, RPS20, TMEM68, TGS1, TRNAT-AGU, U1, LYN, 
MOS, PLAG1, CHCHD7, SDR16C5, SDR16C6, PENK, U6, IMPAD1, FAM110B, 
UBXN2B, CYP7A1

15 56.22—56.63 ADG ADG ACER3, B3GNT6, CAPN5, OMP, MYO7A

18 35.00—35.79 FE DMI, RFI CTCF, CARMIL2, ACD, PARD6A, ENKD1, GFOD2, RANBP10, TSNAXIP1, CENPT, 
THAP11, NUTF2, EDC4, NRN1L, PSKH1, PSMB10, LCAT, SLC12A4, DPEP3, DPEP2, 
DDX28, DUS2, NFATC3, ESRP2, PLA2G15, SLC7A6, SLC7A6OS, PRMT7, SMPD3, 
TPPP3, ZDHHC1, HSD11B2, ATP6V0D1, AGRP, RIPOR1, CTCF, C18H16orf86

18 49.66—50.93 DMI, RFI ADG, FCR, FE, RFI ITPKC, SNRPA, MIA, RAB4B, bta-mir-12057, EGLN2, CYP2F1, CYP2B6, CYP2S1, 
AXL, HNRNPUL1, TGFB1, B9D2, TMEM91, EXOSC5, BCKDHA, B3GNT8, DMAC2, 
ERICH4, CEACAM1, LIPE, PLD3, HIPK4, PRX, SERTAD1, SERTAD3, BLVRB, SPTBN4, 
SHKBP1, LTBP4, NUMBL, COQ8B, CCDC97, C18H19orf47, C18H19orf54

21 7.62—8.15 ADG, DMI, FE, RFI DMI, RFI IGF1R, PGPEP1L

29 48.75—50.42 FCR, RFI ADG, FCR, FE KCNQ1, TRPM5, TSSC4, CD81, TSPAN32, ASCL2, TH, INS, IGF2, MRPL23, TNNT3, 
LSP1, TNNI2, SYT8, CTSD, IFITM10, DUSP8, MOB2, TOLLIP, AP2A2
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factors such as IGF 1 and 2 with an effect on feeding 
control by energy metabolism and linked to tissue devel-
opment [35, 36]. Studies have indicated the BTA14 as a 
functional pleiotropic region underlying genetic differ-
ences in residual feed intake and its component traits 
DMI, ADG, and metabolic body weight [37]. The region 
on BTA 29 (48.78 – 50.42 Mb) explained from 2.14% to 
4.97% of the genetic variance (Supplementary Fig.  2, 3 
and 4). This region harbors genes such as INS, IGF2, and 
TH (Table 2) with a major effect on animal metabolism 
related to insulin and glucose signaling pathways, con-
trolling the energy homeostasis by their effect on fatty 
acids, glycerol, glucose, and acetyl CoA [23, 38]. The 
action of genes related to energy homeostasis results 
in differences in the mechanisms of feed intake due to 
energy homeostasis and growth[39],. Besides, this region 
surrounds genes involved in the energy metabolism of 
skeletal muscle (TNNT3 and TNNI2). Such findings sup-
port the hypothesis that changes in energy expenditure 
by muscle contraction are associated with differences in 
FE [40, 41]. Thus, animals with a lower energy require-
ment for the maintenance of skeletal muscle tissue show 
greater feed efficiency [37].

The genes identified on BTA3 (78.99 – 80.84  Mb), 
BTA4 (70.88 – 71.85 Mb), and BTA11 (73.89 – 74.76 Mb; 
Fig.  1), explained a substantial amount of genetic vari-
ance, ranging from 1.19% to 4.95%, and the regions show 
a key role in neuroendocrinal signal affecting feed intake 
(Supplementary Fig. S2, S3 and S4). These regions harbor 
functional genes that play a role in the peptide signal-reg-
ulating feed intake and energy expenditure as LEPR, LEP-
ROT, and JAK1 on BTA3, OSBPL3, and NPY on BTA4, 
and POMC and ASXL2 on BTA11 (Table 2). These genes 
play a specific hypothalamic function and are metabolic 
modulators that strongly contribute to differences in feed 
intake and energy homeostasis [42]. The genes LEPR, 
LEPROT, and JAK1, are directly associated with feed 
intake by their major role in physiological body homeo-
stasis and association with the genes Leptin and NPY[4, 
43]. Mota et al. [4] observed that serum leptin levels and 
their gene expression probably control the feed intake in 
young Nellore bulls, and Karisa et al. [43] reported that 
these genes are associated with biological processes lead-
ing to more efficient animals. The OSBPL3 gene acts as 
a lipid transporter or sensor at membrane contact sites, 
affecting lipid metabolism [44]. Changes in physiologi-
cal mechanisms related to lipid metabolism have been 
indicated to affect the feed efficiency in beef cattle [6]. 
The NPY gene plays a functional connection in the major 
physiological mechanism regulating feed intake, growth, 
and energy, and its action represents an important fac-
tor affecting FE-related traits [45, 46]. The POMC gene, 
on BTA11, is an appetite-related neuropeptide associated 

with the neuronal control of key mechanisms by which 
animals regulate the feeding intake and body energy 
homeostasis in cattle [47], sheep [45], and chicken [42]. 
The gene ASXL2 plays an important role in adipogen-
esis and acts as a coactivator for proliferator-activated 
receptor gamma (PPARG​) associated with feeding con-
trol [48]. The SNP-window regions on BTA 3, 4, and 11 
might directly affect FE-related traits due to the poten-
tial regulation of energy metabolism and neuroendocrine 
pathways, with major effects on catabolic and anabolic 
pathways involved in feed intake control and energy 
homeostasis.

The major candidate genes identified on BTA5 (65.95—
67.03  Mb) were: IGF1, PMCH, and PARPBP (Table  2). 
The IGF1 gene has functions on insulin metabolism, 
muscle adaptation, and average daily gain, whereas the 
PMCH gene is related to carcass fat levels and marbling 
score [49]. The PARPBP gene regulates the activity of the 
PARP1 gene, which plays an important role in the cell 
cycle and metabolism through insulin resistance [50]. 
The genes identified on BTA7 showed an important effect 
on muscle metabolism (ARHGEF18 and CNN1), lipid 
regulation (ANGPTL8), and energy metabolism (EPOR, 
INSR, and RETN; Table  2). The genes ARHGEF18 and 
CNN1 affect the energy expenditure in the skeletal mus-
cle required for maintenance, contributing to increasing 
feed efficiency by reducing oxidative stress (ARHGEF18) 
and affecting the oxidative metabolism in muscle fib-
ers (CNN1) [51]. The gene ANGPTL8 plays functions 
in physiological adaptation through lipid and glucose 
homeostasis, affecting bovine’s adipogenesis [52]. These 
factors have been associated with energy balance through 
their impact on the concentration of circulating metabo-
lites (insulin and glucose), one of the main metabolic fac-
tors for increasing efficiency in Nellore cattle [53]. Reyer 
et  al. [54] observed that pigs with high FE showed less 
hepatic fat content than low FE, reflecting reductions in 
uptake/storage of fatty acids. The genes affecting energy 
metabolism occur by the mediation of JAK2/STAT5 
(EPOR), energy balance by specific anabolic and catabolic 
pathways (INSR), as well as in glucose and lipid metabo-
lism by the action of the resistin gene (RETN). The genes 
EPOR, INSR, and RETN could be involved as peripheral 
signals of energy homeostasis controlled by glucose and 
insulin homeostasis leading to important feedback with 
NPY regulating the feed intake [55].

The LPL gene mapped on BTA8 (65.95 – 67.82  Mb) 
is directly involved in the metabolism and transport of 
lipids. Montanholi et  al. [56] and Karisa et  al. [43] sug-
gested that less lipogenesis, lipid transport, and fat depo-
sition occurs in beef cattle with high feed efficiency. The 
LPL gene is a multifunctional enzyme involved in energy 
requirements in cattle, affecting feed intake, glucose, and 
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lipids metabolism [57]. The genes CAPN5 and MYO7A 
identified on BTA15 (56.22 – 56.63  Mb) are associated 
with muscle metabolism (Table  2). The CAPN5 regu-
lates the rate of cells’ proteolytic changes and can control 
cell growth, differentiation, and apoptosis [58, 59]. The 
MYO7A is related to the myosin family with a moder-
ate effect on DMI in beef cattle [9]. In mice, homozygous 
for this region displayed decreased body weight and fat 
[60]. Thus, these genes might be directly associated with 
enhanced growth efficiency by regulating fat and muscle 
deposition ratio [59].

The genomic region mapped on BTA18 (35.00 – 
35.79  Mb) accounted from 3.30% to 4.95% of genetic 
variance for FE-related traits (Supplementary informa-
tion Fig. S3 and S4). A total of 36 genes surrounding 
this region was found from these; the gene set, includ-
ing LCAT, PLA2G15, ATP6V0D1, AGRP, and RIPOR1, 
is involved with potential mechanisms related to feed-
ing intake control. Down-regulation of the gene LCAT​ 
decreases the HDL (High-Density Lipoproteins) forma-
tion leading to a reduction in the capacity to transport 
cholesterol from adipose tissue to liver and muscle. The 
PLA2G15 gene regulates the hydrolysis of phospholipids 
into free fatty acids. There is evidence that high feed effi-
cient animals exhibit reduced hepatic usage of fatty acids 
[61]. The gene AGRP is associated with hypothalamic 
integration of energy balance, nutrient partition control, 
and feed intake increase by antagonizing the effects of 
the orexigenic peptides [42].

The genomic region on BTA18 (49.66 – 50.93  Mb) 
explained a significant amount of genetic variance from 
2.05% to 4.07% (Supplementary information Fig. S2, S3 
and S4). The major genes identified in this window were 
LTBP4, TGFB1, CYP2F1, CYP2B6, CYP2S1, and LIPE. 
The LTBP4 gene is a key regulator of TGFB (transform-
ing growth factor-beta) and TGFB1. It is associated with 

skeletal muscle development and growth, a main biologi-
cal factor affecting feed-related traits. Jing et  al. [62] in 
pig and Alexandre et  al. [5] in Nellore cattle observed 
that the TGFB1 signaling pathway plays a key effect 
in feed efficiency by skeletal muscle growth stimula-
tion and metabolism. The gene set (CYP2F1, CYP2B6, 
and CYP2S1) is a member of cytochrome P450 proteins 
involved in synthesizing steroids and lipids. Tizioto et al. 
[6] observed that the cytochrome P450 family was down-
regulated in Nellore cattle less efficient, indicating high 
oxidative stress in these animals. The LIPE gene codi-
fies an enzyme with function in lipid hydrolysis, mainly 
hormone-sensitive lipase (HSL). The LIPE gene increases 
lipolysis during the negative energy balance in dairy cat-
tle to attend to energy homeostasis [63]. Thus, animals 
with the greatest FE might show a higher tolerance for 
oxidative stress leading to lower energy expenditure and 
greater tissue metabolism.

A genomic region on BTA21 explained from 2.47% to 
4.56% of the genetic variance (Supplementary Fig. S2, S3 
and S4). This genomic region surrounds the IGF1R gene, 
which substantially affects genetic differences in body 
weight and feed efficiency in cattle [39, 64]. Kelly et  al. 
[39] observed an over-expression of the IGF1R gene asso-
ciated with energy efficiency in more efficient animals. 
Abo-Ismail et al. [64] observed a significant effect of this 
gene on ADG and marbling. In this context, the potential 
effect of the IGF1R gene on FE-related traits is through 
changes in target metabolic pathways affecting the energy 
balance, protein synthesis, or breakdown.

Functional enrichment of potential candidate genes
Enrichment analysis results pointed out pathways 
that link whole-body energy balance through neuro-
peptides, hormones, and metabolites to maintain the 
greatest feed efficiency (Table  3). In addition, these 

Table 3  Gene enrichment analysis for enriched KEGG pathways, related to gene set identified using the multi-trait meta-analysis 
statistical test for feed efficiency related traits

Pathway ID Description p -value q -value Gene ID

bta04923 Regulation of lipolysis in adipocytes 0.00004 0.00470 LIPE, ADCY3, INSR, INS, NPY

bta04152 AMPK signaling pathway 0.00017 0.00630 LIPE, IGF1R, IGF1, INSR, LEPR, INS

bta04015 Rap1 signaling pathway 0.00045 0.01040 PARD6A, ADCY3, IGF1R, IGF1, INSR, INS

bta04010 MAPK signaling pathway 0.00080 0.01040 TGFB1, IGF1R, ECSIT, IGF1, INSR, INS, IGF2

bta04014 Ras signaling pathway 0.00088 0.01040 IGF1R, IGF1, INSR, PLD1, INS, IGF2

bta04068 FoxO signaling pathway 0.00190 0.01770 TGFB1, IGF1R, IGF1, INSR, INS

bta04024 cAMP signaling pathway 0.00200 0.01780 GHSR, LIPE, ADCY3, PDE4B, PLD1, NPY

bta04910 Insulin signaling pathway 0.01000 0.04380 INS, INSR, LIPE

bta04935 Growth hormone synthesis, secretion, and 
action

0.02690 0.04140 ADCY3, GHSR, IGF1

bta04630 JAK-STAT signaling pathway 0.03470 0.04710 EPOR, JAK1, LEPR
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results obtained from biological process (BP) and 
KEGG pathways enrichment analyses highlighted that 
FE-related traits share common biological pathways 
and underlie the relevance of pleiotropy in important 
physiological events that regulate cattle feed efficiency 
(Supplementary Table S1 and S2).

KEGG pathway
Enriched pathways identified the MAPK (bta04010), 
AMPK (bta04152), and insulin signaling (bta04910) path-
ways which play a key role in molecular signals that act 
on energy homeostasis leading to the greatest feed effi-
ciency in cattle (Table  3). The MAPK (bta04010) and 
insulin signaling (bta04910) pathways have a crucial role 
in the regulatory pathways of the biological responses 
to the insulin and IGF-1 levels, leading to differences in 
energy metabolism through glucose and lipid metabo-
lism [65]. The control energy metabolism by up-regulat-
ing genes associated with MAPK signaling could explain 
their relationship with animals selected to increase feed 
efficiency [66].

The AMPK pathway (bta04152) is associated with met-
abolic energy balance 67 and increases protein metabo-
lism, fatty acid oxidation, glucose uptake, and glycolysis 
(Table 3). Thus, the AMPK pathway regulates these prin-
cipal energy sources, maintaining energy balance at the 
whole-body level by mediating effects on different hor-
mones acting on hypothalamic regions, which regulate 
feed intake and energy expenditure [67, 68]. In this con-
text, Hu et al. [69] observed a striking effect of AMPK on 
bird feed intake control through regulation of nutritional 
status and energy homeostasis. Thus, the feed intake 
control mediated by pathways related to AMPK and the 
neuroactive receptor-ligand interaction (bta04080) were 
related to genomic regions that harbor genes with actions 
in the arc from the nucleus of the hypothalamus (NPY, 
POMC, PENK, GHSR, LEPR, and LEPROT) [68]. This 
result increased the evidence of genomic regions mediat-
ing appetite modulation and metabolic effects in control-
ling feed intake in populations (IZ and QLT).

The significant metabolic pathways JAK-STAT signal-
ing (bta04630), insulin signaling (bta04910), and growth 
hormone (bta04935; Table 3) are related to major meta-
bolic substrates (glucose and insulin) and their levels, 
rather than a direct effect on body energy homeostasis 
[70]. The major candidate genes (GHSR, INS, INSR, LIPE, 
JAK1, and LEPR) are directly associated with regulating 
these pathways. These metabolic responses act to keep 
metabolic homeostasis, leading to different feed effi-
ciency by catabolic process, mainly energy mobilization 
and protein degradation [43, 45, 71]. The cAMP pathway 
(bta04024) affects a cascade that modulates numerous 
cellular events, including hormones, neurotransmitters, 

and other signaling molecules [72], associated with the 
regulation of lipolysis in adipocytes (bta04923) and can 
regulate the feed efficiency by mediating lipid metabo-
lism. The activation of the cAMP pathway leads to the 
lipolysis of lipid droplets. In this context, Xu et  al. [73] 
observed that the cAMP signaling pathway affects the 
feed efficiency of pigs through different mediations in 
lipid metabolism in the adipose tissues. Thus, the major 
genes (GHSR, LIPE, ADCY3, PDE4B, PLD1, INSR, INS, 
and NPY) related to cAMP and regulation of lipolysis in 
adipocytes lead to higher feed efficiency in animals by 
differences in lipid synthesis and degradation of the lipid 
content of adipocytes.

Gene ontology (GO)
Gene enrichment showed the main biological mecha-
nisms related to phenotypic divergence for feed effi-
ciency-related traits (Supplementary Table S1 and S2). 
These biological processes highlight the effect on hor-
monal stimuli and signaling, which supports the relation-
ship between feed intake and energy expenditure. We 
also found biological terms related to insulin and glucose 
levels, lipid metabolic process, precursor metabolites, 
energy metabolism, and muscle metabolism and contrac-
tion (Supplementary Table S1 and S2).

Biological processes affecting muscle metabolism and 
contraction (GO:0050881, GO:0090257, GO:0030048, 
GO:0006937, GO:0070252, GO:0003012, GO:0034103, 
GO:0048771, and GO:1901861; Supplementary Table 
S1) represent a striking effect for high feed efficiency 
contributing to the difference in energy expenditure by 
the skeletal muscle. Fu et al. [40] observed that ATP syn-
thesis is comparatively lower in the skeletal muscle tis-
sues in more efficient pigs. In contrast, Carvalho et  al. 
[74] reported that differences in skeletal muscle energy 
expenditure contribute to Nellore cattle feed efficiency 
differences. In this context, biological processes affecting 
muscle metabolism and contraction suggest an impor-
tant role in skeletal muscle homeostasis contributing 
to differences in FE-related traits in Nellore cattle [6]. 
In addition, biological processes associated with tissue 
remodeling (GO:0034103 and GO:0048771) and muscle 
development (GO:1901861) lead to differences in pro-
tein metabolism between efficient and inefficient ani-
mals. These complex biological processes controlling the 
muscle energy expenditure are known to play a key role 
in feed efficiency, in which animals with low RFI showed 
less protein degradation than those with high RFI [75]. 
Thus, lower protein turnover in more efficient animals 
can be an essential factor for lower muscle maintenance 
energy requirement, consequently reducing up 37% of 
energy expenditure [76].
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Biological processes related to insulin and glucose 
levels, lipid metabolic process, and energy metabolism 
highlight the importance of metabolic signals leading 
to adjustments in feed intake and energy expenditure 
(Supplementary Table S1). These biological processes 
also provide a link between peripheral signals conveying 
information about energy homeostasis and hypothalamic 
signals associated with anabolic and catabolic pathways 
[71]. In addition, biological processes associated with 
hormonal stimuli and signaling, and modulation of the 
feeding intake rate (Supplementary Table S2), indicated a 
link between the hypothalamic signal and feed efficiency. 
Overall, integrating endocrine and metabolic modula-
tors serves as a crucial neuroendocrine factor to control 
feed intake by adjusting feed intake and energy expendi-
ture. Thus, the hypothalamus receives information about 
the animal’s nutritional and metabolic status to regulate 
neuropeptides’ expression, controlling the feed intake by 
anorexigenic (POMC, LEPR, LEPROT, and GHSR) and 
orexigenic (NPY) signals [47].

The enrichment pathway analyses complemented the 
multi-trait meta-analysis statistical test of GWAS results, 
contributing to unraveling the complexity of the FE-
related traits control. In this framework, the FE-related 
traits were determined by combining different genomic 
regions (Fig. 1) and biological mechanisms (Supplemen-
tary Table S1 and S2) affecting physiological events with 
metabolic and endocrine signals changes, resulting in 
differences in feed intake and energy homeostasis. Thus, 
these results permit a better interpretation of the bio-
logical control of cattle feed efficiency through metabolic 
aspects and neural control mediating the catabolic and 
anabolic pathways, with effects on energy balance lead-
ing to specific physiological signals. Overall, the results 
obtained can be used to search for causal mutations or as 
a strategy to pre-select SNP markers for use in genomic 
selection approaches aiming to reduce the number of 
markers and calculation time and avoid overfitting the 
model [77, 78].

Conclusion
The multi-trait meta-analysis statistical test of GWAS 
and enrichment analyses allowed the identification of 
key genomic regions with significant effects on neu-
roendocrine signals and energy homeostasis control-
ling feed efficiency-related traits in Nellore cattle. 
These genomic regions on BTA 1, 2, 3, 4, 7, 8, 11, 14, 15, 
18, 21, and 29 surrounding genes related to biological 
mechanisms that regulate the whole-body level’s energy 
balance with a striking effect for FE-related traits 
(ADG, FCR, RFI, DMI, and FE) across the Nellore cat-
tle population. Thus, the pleiotropic effects of the key-
regulatory genomic regions are directly implicated in 

the regulation of energy metabolism, and hypothalamus 
signaling may have an essential effect on FE-related 
traits in the two Nellore cattle populations. Overall, the 
major genomic regions uncovered across the Nellore 
cattle population are related to major modulators link-
ing the metabolic homeostasis and genes that regulate 
the feeding intake allowing greater feed efficiency.
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